Intensive CBT Telehealth for Pediatric OCD during COVID-19: Comparison with a Matched Sample Treated In-Person

Martin E. Franklin. Ph.D.

Based on: Grand Rounds Lecture, Child & Adol Psychiatry, UCLA (March 10, 2022) and recently presented at Rogers in-person seminar held in Miami (September 9, 2022)

ROGERS

Quick overview of logistics

Our speaker will give a 70- to 75-minute presentation.

Following the presentation, there will be a dedicated time to answer your questions.

- Please use the Q&A feature, located in the toolbar at the bottom of your screen, to send your question to the moderator.
- Q&A
- The moderator will review all questions submitted and select the most appropriate ones to ask the presenter.

Disclosures

Martin E. Franklin, PhD, has declared that he does not, nor does his family have, any financial relationship in any amount occurring in the last 12 months with a commercial interest whose products or services are discussed in the presentation. The presenter has declared that he does not have any relevant non-financial relationships. Additionally, all planners involved do not have any financial relationships.

Learning objectives

- Upon completion of the instructional program, participants should be able to:
- 1. Describe the four essential components of cognitive behavioral treatment for OCD.
- 2. Recognize the potential value of telehealth treatments in mitigating at least two crucial barriers to care.

1

Most scientists regarded the new streamlined peer-review process as 'quite an improvement.'

Telehealth (TH) in Psychology/Psychiatry: What Does the Evidence Tell Us?

- Non-OCD (depression: Morland et al., 2010; substance abuse: Jiang et al., 2017; PTSD: Germain et al., 2009; Morland et al., 2020)
- OCD in Adults (e.g., Andersson et al., 2012; Mahoney et al., 2014; Wootton et al., 2013)
- OCD in Kids/Teens (e.g., Comer et al., 2014; 2017; Lenhard et al., 2017; Storch et al., 2011)

2

TH in Psychology/Psychiatry: An Alternative/Equivalent Platform?

- A potential avenue for care when access to care is limited by distance/travel, time/expense, & therapist availability
- For whom does it work?
- For whom does it NOT work?
- Some interest in the topic for a decade, but then the world changed...

COVID-19:

Clinical Implications

- Rising tide raises all boats
- OCD is a particularly relevant boat
- Therapist unavailability
- · Patient reluctance
- Immediate need to shift to Virtual platforms to continue to provide care

CDC Website, 2020

10

Things that grew during the pandemic:

- Rates of anxiety and depressive symptoms in the population (according to CDC data)
- Demand for mental health services across the developmental spectrum
- Need to study delivery methods to • determine their long-term viability as a method to bridge the mental health treatment access gap

3

Rationale for Current Study

- COVID necessitated the pivot to TH, which provided opportunity to explore outcomes on a large scale
- Large samples available at Rogers afford chance to examine treatment response, predictors, and moderators
- Large patient database allowed for matching procedure to control for variables that differentially influence treatment outcome
- Practical, real-world implications for those being treated at a higher level of care

13

CBT for Pediatric OCD: Seminal Studies

- Multiple meta-analyses & reviews (e.g., Farhat et al., in press) N = 1,234
- Published CBT randomized trials include:
- » Lenhard et al. (2017): Internet-based CBT vs. WL: N = 67
- » Piacentini et al. (2011): CBT vs. REL: N = 71
- » Barrett et al. (2004): Individual and Family CBT vs. WL: N = 77
 - » Bolton et al. (2011): Brief & full cognitively-oriented TX vs. WL: N = 96
- » POTS I, II, & Jr. (2004, 2011, 2014): Ns = 112, 124, & 127
- » Storch et al (2016): DCS + CBT vs. PBO + CBT: N = 142
- » Torp et al. (2015): More CBT vs. SER for CBT partial responders: N = 269

Predictors

- Primary:
 - Remote Treatment
- · Covariates:
 - Treatment setting: PHP & IOP, Age, Length of stay, Sex (assigned at birth), Race (White/non-White) and Ethnicity (Hispanic/non-Hispanic), Insurance Payer-type, Number of Diagnoses
- Models were trimmed to exclude non-significant predictors

Cognitive behavioral treatment for OCD: Essential components						
Exposure in vivo:	Prolonged confrontation with anxiety-evoking stimuli (e.g., contact with contamination)					
Imaginal exposure:	Prolonged imaginal confrontation with feared images (e.g., buried alive, hitting a pedestrian while driving)					
Response prevention:	Blocking of compulsions (e.g., leaving the kitchen without checking the stove)					
Cognitive methods:	Correcting erroneous cognitions (e.g., "anxiety won't decrease unless I ritualize;" "If I don't check someone will break in and kill my family")					

26

Concomitant Pharmacotherapy

Majority receiving concomitant pharmacotherapy, usually SSRI

- ✓ Optimized meds (minimum therapeutic dose, criteria from POTS II, Franklin et al., 2011)
- ✓ Suboptimized but had med adjustment during their stay

	Length of Stay (PHP vs. IOP)						
		In-Person	Telehealth	Total	Difference IP v. TH		
ults	РНР	31.09 (13.26)	32.08 (13.88)	31.58 (13.57)			
Res	ЮР	23.47 (12.48)	24.81 (12.56)	24.14 (12.52)			
	Total	28.32 (13.48)	29.43 (13.85)		d = 0.08, p = 0.14		
	Difference IOP v. PHP			d = 0.57, p < 0.001			

CY-BOCS & PQ-LES-Q Continuous Data In-Person (n = 643) Telehealth (n = 643) PHP (n = 409) PHP (n = 409) Admission Discharge Admission Discharge Effect (d) Effect (d) M (SD) M (SD) M (SD) M (SD) CYBOCS 25.0 (5.3) 15.5 (7.5) 1.5 25.2 (5.3) 16.7 (7.0) <mark>1.4</mark> PQ-LES-Q 44.7 (9.1) 51.6 (9.9) 0.7 45.1 (9.2) 51.3 (9.0) <mark>0.7</mark> IOP (n = 234) IOP (n = 234) CYBOCS 22.6 (4.7) 14.8 (7.3) 1.3 21.7 (4.0) 16.5 (6.2) 1.0 48.2 (8.5) 52.5 (9.4) 48.3 (7.9) 51.7 (8.9) PQ-LES-Q 0.5 0.4

8

30

Summary of Regression Analyses

- Four variables predicted CY-BOCS scores at discharge:
 - TH, age, diagnosis count, length of stay
 - · Of these, only length of stay was negatively associated with CY-BOCS at discharge
- Age and DX count also predicted PQ-LES-Q, both negatively
- On average, TH patients discharged with CY-BOCS scores 1.25 points higher than IP patients
- < 3 point Y-BOCS difference not considered clinically meaningful (e.g., Foa et al., 2022, JAMA Psychiatry)

Study Limitations

Sampling frame:

- ✓ Limited SES, racial, & ethnic diversity
- ✓ Truncated age range

Design issues:

- ✓ Lack of randomization
- ✓ Clinical diagnostic assessment procedure
- ✓ Self-report primary outcome measure (CY-BOCS)
- ✓ Concomitant & diverse pharmacotherapy regimens
- ✓ Lack of follow-up assessments

38

What's Next?

- Expand TH evaluation to other program lines @ Rogers
- Examination of TX outcomes x concomitant med status
- Machine learning approaches to outcome prediction/moderation
- Examination of TX outcome x SES, race, & ethnicity
- Discussion of implications of our sampling frame for generalizability of findings
- Broader discussion of improving inclusiveness & access to care

